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The cusp conditions of KiTe for a spinless n-electron wave function are used to derive 
corresponding conditions for the second-order density matrix .Fc2)(rir 2, r'lr~). 

Die cusp-Bedingungen yon KATO fiir das VerhMten einer spinfreien n-Elektronenfunktion 
an den Coulomb-Singularit~ten der Schr6dingergleiehung werden zur Ableitung entspreetlender 

F(2)(rir2, rir~) benutzt. Bedingungen fiir die reduzierte Dichtematrix zweiter Ordnung ' ' 

Les conditions de rebroussement de KiTO pour une fonetion d'onde, sans spin, s n 61ec- 
trons, sent utitis6es pour d6duire des conditions corresl~ondantes pour la matriee de densit6 du 
second ordre F(2)(rir2, r;ir~). 

1. Introduction 

The renewed interest in the use of reduced density matrices for a quantum 
mechanical description of atomic and molecular systems is evident by the many 
papers published in the last years on this special subject [1]. 

This interest was partly stimulated by the hope that  it might be possible to 
determine the energies by a direct caieulation of the 2na-order density matrices F(2) 
of such systems without using its wave-/unctions at all. I t  was felt that  this 
density matrix approach might be a way around the difficulties encountered in 
conventional calculations using approximate wave functions, namely the very 
sharp increase in computational time with increasing number of electrons for a 
fixed absolute accuracy of the calculated energies. 

While an expression for the total energy in terms of/-(2) exists [2] which can 
be used in an variational approach for the approximate calculation of the energy, 
the main stumbling block has been what is called the n-representability problem. 
This means that  not, all p-th order density matrices F(~) one can construct and 
which fulfill the symmetry relations (6 a--e) can be derived from an antisymmetrie 
n-electron wave function according to the definition of / ' (p)  given by (5). The 
n.a.s, conditions for this to be true for a given F(2) have now been derived [3] 
although they are not yet in a form suitable for numerieai applications. One can 
hope though that  the near future will bring numerical calculations using/'(~) only 
and then one will see whether the hope expressed above ~4ll be realised in practise. 

In  this paper we are concerned with general properties of density matrices such 
as the explicit spin-dependence of/,(i) and/,(2) for the important ease of a wave 
function with S and M s  being good quantum numbers, which has been obtained 
previously [4, 5, 6]. The symmetry properties of/,(i) under the spatial symmetry 
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operations of the Hamiltonian have also been treated in some detail [4, 7]. The 
behaviour of/-(1) at the Coulomb-singularities of the SchrSdinger equation has 
been considered in a previous paper of the author [8] as well as by  S T n ~  [9]. 

The present paper deals with the same problem for the 2nd-order density 
matr ix  F(2). 

Finally it should be mentioned that  besides the interest in/ '(~) for the direct 
calculation of the energy, the quantities FO) and/ ' (~)  are also very useful for the 
interpretation of previously calculated approximate wave functions and for the 
comparison of different such wave functions for the same system. 

2. KATe's cusp conditions for a spinlcss wave function 

We shall follow the presentation and nomenclature of a previous paper by  the 
author [8] and just review shortly the results obtained there. 

The SC~RSD~GER equation for an n-electron molecule is 

( H - E ) ~ P =  - 1 A t - ~ r ~ -  ~ § - - - E  T 0 ,  (i) 

where ri~ is the distance of the i-th electron from the cr nucleus of charge Z~ 
and rii the intereleetronie distance for electrons i and ]. This differential equation 
becomes singular whenever one of the conditions 

r i~=O,  i =  i,  2 . . .  n, c c : a , b  . . .  (2a) 

r~j = 0, I < i < ] < n (2b) 

holds. At these singular points of the differential Eq. (l) its solutions }/1 also have 
a certain type of singularity whereas otherwise they are regular functions [10]. 
Up to now the case where one and only one of the conditions (2a) or (2b) occurs 
has been investigated rigorously by  T. KATe [10]. His results are tha t  in this case 

has a eusp~ and tha t  the average slope of T at such a point is given by  

(~ T)  = - Zcr J (0, ~'2 �9 �9 �9 ~'~t) for ~'1t% = 0 (Coulomb-cusp) (3a) 
71=0 

( 0 ~ )  = §  � 8 9  r a . . . r n )  f e r r i c = 0  (Correlationcusp).  (3b) 
~I2~ 0 

For (3a) the coordinate system is centered on nucleus a and the bar over }/I indi- 
cares an angular average over ~1, ~1. For (3b) the origin of the coordinate system 
is irrelevant, the bar now indicates averaging T over a small sphere centered at 
r = (rl § r~)/2 by rotating the vector r ~  = r~ - r~. 

As shown in the previous paper [8], the differential form (3a, b) of the cusp 
conditions given by KATe [10] is equivalent to the integral form 

~(1~'1' "~'2 " ' "  I~n) = ~ f ( 0 ,  i~' 2 . . .  •'/t) (J- - -  Za'rl) -~ ~ ' l ' a l ( r 2  . . .  r n )  -]- 0 ( r l  2) ( 4 a )  

and 

i f  W(rl, r ~ . . .  rn) = ~ ( r ,  r, r a . . .  rn) (i § y 1~) § r1~'c12( r, ra.  �9 rn) § 0(r~2) (4b) 

where 

r = ~ (r~ + r~).  
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3. Cusp conditions for the second order density matrix 
The p-th order density matr ix F(~) constructed from an n-electron antisymme- 

tric wave function ~ is defined by* 

/'(~)(x, x') = S qP*(x, y)qO(x', y) dy (5) 

where x and y are abbreviations for all space and spin coordinates of electrons 
i to p and p + I to n respectively. I t  follows then that  

F(~)(x', x) =/'(~)(x, x')* (6a) 
F(2~ x') =/~(~)(x, Px') = sp F(P)(x, x') (6b) 

tr I'(~) = f F(~)(x, x) dx = t . (6c) 

In other words, all density matrices derivable from a wave function must be 
hermitian, antisymmetric in both sets of variables and of finite trace**. 

For the 2ha-order density matrix of a spinless wave function, Eq. (5) takes the 
form 

F(2)(rl  r2; r'~ r'2) = f ~J*(r~ r 2 ra . . . rn)  ~ ( r ' l  r'2 ra . . .  rn)  d r  3 . . .  d r n  . (7) 

Introducing the expression (4a) for the Coulomb-cusp for both ~P* and }P we get: 
! I ~ ! _ _  , ? I .  I 

F(2)(rl r2, r l  r2) Y(2)(Or~, Ors)" [i Z(r 1 q- r'l) ] -}- r 1. b (r2r2) + r l  b(r2r2) 4- . .  �9 
(sa) 

with 

= j" a(r'~r3 . . .  rn)  }//*(0, r2r  a . . .  rn)  dra . . .  drn (Sb) b(r~r2) 

for the case, where both r 1 and r'~ are small. Obviously, Eq. (6a) is fulfilled, applica- 
tion of Eq. (6b) to (8a, b) gives the other combinations (r2, r~ small etc.) for this 
case. 

I f  Eq. (4a) is used only once, we get instead 
I I l l _ _  * * t  ! I x  

F(2)(rlr2, f i r2)  = /~(2) (0r  2, r lr2)  ( l  Zr l )  q- r~t. 0 (r2rlr2) , (9a) 
with 

b ( r 2 r l r  2) = a * ( r 2 . . ,  r n ) ~ ( r l r 2 r a . . ,  r n ) d r a . . ,  drn (9b) 

for the case where r~ only is small. The other combinations follow by the use of 
(6a, b). 

I f  one puts r~ = r~ in (8), integrates over r~ and uses the relation [see Eq. (5)] 

7(r l ,  r l )  = F~ rl) = /P(2)(rlr 2, f i r2)  d r  2 (lOa) 
J 

one gets 
7(r~, r[) = 7(0,0) [1 -- Z(r~ q- r;)] § r v b *  + r ' l " b . . . .  ( t la )  

with 

= f 5(r2r2)dre : f a ( r=. . ,  rn )W*(Or2 . . ,  r n ) d r 2 . . ,  dvn, ( l ib )  b 

which agrees with Eq. (i5a, b) of [8], if [P is real. 

�9 With the normMisation used by P. O. L6wDt~ [2], a factor (~) occurs on the r.h.s, of 
Eq. (5) and (6c). 

�9 * This however is only a necessary but not sufficient condition for F(~) being n-represen- 
table, see chapter i .  
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The same procedure, but starting from Eq. (9) instead, gives another cusp- 
condition for y which we give here only for the sake of completeness : 

~2(~'1, ~'tl) = ~?(0, ~'1)" (~ - -  ZF1)  ~- ~ '1"b~(~/1)  , (12a.) 

where 

b*(r ' l )  f * ' f ' �9 = b ( rer l r2)  dr2 = a*(r2  . . .  rn) }P(r lr2  . . .  rn) dr2 . .  d r n .  (12b) 
t 

We next derive the conditions on F(2) resulting from the corre la t ion-cusp  in ~P. 
Proceeding as above but  with (4b) instead of (4a) we get 

F(2)(r lr~,  rlr~.) = I ' (~)(rr ,  r ' r ' )  ( J + � 8 9  r 1 . . .  ' ' 13 ~ ~ r~'2") § r12" d * ( r r ' )  ~ r1~2," d ( r ' r )  + 
(13a) 

where 

d ( r ' r )  = j" c(r 'r8 . . .  rn)  T * ( r r r a  . . .  rn )  dr3 . . .  d r n  (13b) 

for the case where both rl2 and rl '~' are small. Eq. (6a) is fulfilled by  (13a). 
I f  Eq. (4b) is used just once, we get finally 

I ! l ! ] i t S 1  i l~  
F(~)(rlr2,  r l r  2) = F(2) ( rr ,  r l r2 ) ' ( i  + ~ r12) -~- r l2"a  ( r r l r2 )  + �9 . .  (i4a) 

w h e r e  

~rrlr2) c * ( r ,  r3 . . .  rn) T ( r l r 2 r ~  . . .  rn)  dr~ . .  . d r~  (14b) 

for the case where only r12 is small. 

4. Discussion 

In  conclusion, a few remarks about the derived cusp-conditions for F(2) may  
be in order. 

First of all, Eq. (3 a, 4a) were derived under the assumption tha t  all of r 2 . . .  r n  
are different from each other and from the zero vector. However, the integration 
in (Sb) goes over all space and therefore contains a part,  where this assumption is 
violated. I t  seems reasonable to assume however, that  the infinitesimal extent of 
this par t  ensures tha t  it makes no change in the result (8a, b). The same remark 
obtains for Eq. (9--14) also. 

Secondly, Eq. (8-- i4)  do not contain all  of the possible combinations. For 
example, Eq. (8) together with the use of Eq. (6b) take care of only four out of a 
total  of six possible combinations of two vectors going to zero out of a total  of 

! i 
four. For the remaining two combinations (r 1 a n d  r 2 ~ 0 or r 1 a n d  r 2 -> 0) one 
needs the behaviour of the wave function when two electrons approach a nucleus 
s i m u l t a n e o u s l y  (3-body collision-type of singularity). As mentioned before, this 
behaviour of T when two - -  or even more - -  of Eq. (2a, b) hold, is still unknown. 

In  this connection, the statement in [8] concerning the logarithmic terms 
introduced by Pock  [11J in an expansion of ~P for the 2-electron ease needs to be 
clarified. Theorem I I  of KATO'S paper [10] ensures the boundedness of ~P even at 
these higher singularities. This theorem by itself does not exclude a term of the 
form (r~ § r~). ln(r~ + r~) as introduced by  POCK. Whether such a term ~ctually 
occurs however is still open to doubt due to the formal nature of FocK's expan- 
sion. 
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